Modulatory effects of FMRF-NH2 on outward currents and oscillatory activity in heart interneurons of the medicinal leech.
نویسندگان
چکیده
Using single-electrode voltage clamp, heart interneurons of the medicinal leech were shown to possess both a rapidly inactivating outward current, IA, and a more slowly inactivating outward current, IK. IA and IK could be separated by their voltage sensitivity and kinetic properties. FMRF-NH2 (Phe-Met-Arg-Phe-NH2) modulates IK by shifting both steady state activation and inactivation to more hyperpolarized potentials, but it does not affect the time constants. IA and IK appear to use K+ as a charge carrier; a change in the external [K+] produced a shift in the apparent reversal potential in the direction predicted with potassium as the charge carrier. Both IA and IK are sensitive to tetraethylammonium (TEA) and 4-aminopyridine (4-AP), and TEA and 4-AP both interfere with the effects of FMRF-NH2 on IK. The biophysical properties of IA and of IK in the presence and absence of FMRF-NH2 were incorporated into a Hodgkin-Huxley model of these currents that could reproduce voltage-clamp data. FMRF-NH2 produces two apparently dissimilar effects on the heartbeat rhythm--acceleration and disruption. We suggest that both effects could result from the hyperpolarizing shifts in steady state activation and inactivation of IK.
منابع مشابه
Oscillatory behaviors in pharmacologically isolated heart interneurons from the medicinal leech
The central motor pattern for heartbeat in the medicinal leech is based upon the alternating bursting activity of mutually inhibitory pairs of heart interneurons (HNs). When pharmacologically isolated, these neurons spike tonically. Using a canonical model of an HN cell (Nadim et al., J. Comput. Neurosci. 2 (1995) 215}235) as a starting point, we generated three models, possessing di!erent subs...
متن کاملFMRF-amide-like substances in the leech. I. Immunocytochemical localization.
FMRF-amide-like immunoreactivity (FLI) was localized to approximately 50 neurons in each segmental ganglion of the medicinal leech using immunocytochemical techniques. Although most of these neurons were iterated in each segmental ganglion, some were more restricted in their segmental distribution. The head and tail ganglia likewise contained numerous FMRF-amide-like immunoreactive cells. In ad...
متن کاملA slow outward current activated by FMRFamide in heart interneurons of the medicinal leech.
The endogenous neuropeptide FMRFamide (Phe-Met-Arg-Phe-NH2) can accelerate the oscillation of reciprocally inhibitory pairs of interneurons that pace heartbeat in the medicinal leech. A model based on all available biophysical data of a two-cell heart interneuron oscillator provides a theoretical basis for understanding this modulation. Previously observed modulation of K+ currents by FMRFamide...
متن کاملJourna Lof Neurophysiology
I. We examined high-threshold synaptic transmission between oscillatory pairs of leech heart interneurons. Inhibitory postsynaptic currents ( IPSCs) could be reliably evoked by depolarizing the presynaptic neuron in voltage clamp from a holding potential of -35 mV. At this presynaptic potential, the Ca2+ currents underlying graded transmission are completely inactivated, and we conclude that a ...
متن کاملFMRF-amide-like substances in the leech. II. Bioactivity on the heartbeat system.
In the preceding paper (Kuhlman, J. R., C. Li, and R. L. Calabrese (1985) J. Neurosci. 5: 2301-2309) FMRF-amide-like immunoreactivity was localized to a specific set of neurons in the leech. Three types of these neurons are involved in controlling the animal's heartbeat: HE motor neurons and HA modulatory neurons which directly innervate the hearts, and the swim-initiating interneurons (cells 2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 12 2 شماره
صفحات -
تاریخ انتشار 1992